Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1209237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388731

RESUMO

Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.


Assuntos
Citocinas , Neoplasias , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Células Matadoras Naturais
2.
Cancers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139598

RESUMO

In the last 20 years, Natural Killer (NK) cell-based immunotherapy has become a promising approach to target various types of cancer. Indeed, NK cells play a pivotal role in the first-line defense against tumors through major histocompatibility complex-independent immunosurveillance. Their role in the control of leukemia relapse has been clearly established and, moreover, the presence of NK cells in the tumor microenvironment (TME) generally correlates with good prognosis. However, it has also been observed that, often, NK cells poorly infiltrate the tumor tissue, and, in TME, their functions may be compromised by immunosuppressive factors that contribute to the failure of anti-cancer immune response. Currently, studies are focused on the design of effective strategies to expand NK cells and enhance their cytotoxic activity, exploiting different cell sources, such as peripheral blood (PB), umbilical cord blood (UCB) and NK cell lines. Among them, UCB represents an important source of mature NK cells and CD34+ Hematopoietic Stem and Progenitor Cells (HSPCs), as precursors of NK cells. In this review, we summarize the UCB-derived NK cell activity in the tumor context, review the different in-vitro models to expand NK cells from UCB, and discuss the importance of their exploitation in anti-tumor immunotherapy protocols.

3.
Cancers (Basel) ; 13(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467134

RESUMO

The dysregulation of epigenetic modifications has a well-established role in the development and progression of hematological malignancies and of solid tumors. In this context, EZH1/2 inhibitors have been designed to interfere with EZH1/2 enzymes involved in histone methylation (e.g., H3K27me3), leading to tumor growth arrest or the restoration of tumor suppressor gene transcription. However, these compounds also affect normal hematopoiesis, interfering with self-renewal and differentiation of CD34+-Hematopoietic Stem/Progenitor Cells (HSPC), and, in turn, could modulate the generation of potential anti-tumor effector lymphocytes. Given the important role of NK cells in the immune surveillance of tumors, it would be useful to understand whether epigenetic drugs can modulate NK cell differentiation and functional maturation. CD34+-HSPC were cultured in the absence or in the presence of the EZH1/2 inhibitor UNC1999 and EZH2 inhibitor GSK126. Our results show that UNC1999 and GSK126 increased CD56+ cell proliferation compared to the control condition. However, UNC1999 and GSK 126 favored the proliferation of no-cytotoxic CD56+ILC3, according to the early expression of the AHR and ROR-γt transcription factors. Our results describe novel epigenetic mechanisms involved in the modulation of NK cell maturation that may provide new tools for designing NK cell-based immunotherapy.

4.
Cancers (Basel) ; 12(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218226

RESUMO

In the last 20 years there has been a huge increase in the number of novel drugs for cancer treatment. Most of them exploit their ability to target specific oncogenic mutations in the tumors (targeted therapies-TT), while others target the immune-checkpoint inhibitor molecules (ICI) or the epigenetic DNA modifications. Among them, TT are the longest established drugs exploited against a wide spectrum of both solid and hematological tumors, often with reasonable costs and good efficacy as compared to other innovative therapies (i.e., ICI). Although they have greatly improved the treatment of cancer patients and their survival, patients often relapse or develop drug-resistance, leading to the impossibility to eradicate the disease. The outcome of TT has been often correlated with their ability to affect not only tumor cells, but also the repertoire of immune cells and their ability to interact with cancer cells. Thus, the possibility to create novel synergies among drugs an immunotherapy prompted scientists and physicians to deeply characterize the effects of TT on immune cells both by in-vitro and by ex-vivo analyses. In this context, NK cells may represent a key issue, since they have been shown to exert a potent anti-tumor activity, both against hematological malignancies and solid tumors. In the present review we will discuss most recent ex-vivo analyses that clarify the effect of TT treatment on patient's NK cells comparing them with clinical outcome and previous in-vitro data.

5.
Front Immunol ; 9: 2433, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405627

RESUMO

Tyrosin kinase inhibitors (TKI) sharply improved the prognosis of Chronic Myeloid Leukemia (CML) and of Philadelphia+ Acute Lymphoblastic Leukemia (Ph+ALL) patients. However, TKI are not curative because of the development of resistance and lack of complete molecular remission in the majority of patients. Clinical evidences would support the notion that patient's immune system may play a key role in preventing relapses. In particular, increased proportions of terminally differentiated CD56+CD16+CD57+ NK cells have been reported to be associated with successful Imatinib therapy discontinuation or with a deep molecular response in Dasatinib-treated patients. In view of the potential role of NK cells in immune-response against CML, it is important to study whether any TKI have an effect on the NK cell development and identify possible molecular mechanism(s) by which continuous exposure to in vitro TKI may influence NK cell development and repertoire. To this end, CD34+ hematopoietic stem cells (HSC) were cultured in the absence or in the presence of Imatinib, Nilotinib, or Dasatinib. We show that all compounds exert an inhibitory effect on CD56+ cell recovery. In addition, Dasatinib sharply skewed the repertoire of CD56+ cell population, leading to an impaired recovery of CD56+CD117-CD16+CD94/NKG2A+EOMES+ mature cytotoxic NK cells, while the recovery of CD56+CD117+CD94/NKG2A-RORγt+ IL-22-producing ILC3 was not affected. This effect appears to involve the Dasatinib-mediated inhibition of Src kinases and, indirectly, of STAT5-signaling activation in CD34+ cells during first days of culture. Our studies, reveal a possible mechanism by which Dasatinib may interfere with the proliferation and maturation of fully competent NK cells, i.e., by targeting signaling pathways required for differentiation and survival of NK cells but not of ILC3.


Assuntos
Antineoplásicos/uso terapêutico , Células Matadoras Naturais/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Linfócitos/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Antígeno CD56/metabolismo , Diferenciação Celular , Células Cultivadas , Citotoxicidade Imunológica , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Interleucinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptores de IgG/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...